STD XII COMPETENCY BASED QUESTIONS

NAME OF TOPIC: THREE-DIMENSIONAL GEOMETRY

EXPECTED LEARNING OUTCOMES:

- To find direction cosines and direction ratios of a line i)
- ii) To find the equation of a line in space
- iii) To find the angle between two lines
- To find the shortest distance between two lines iv)

CORE CONCEPTS AND MAJOR AREAS:

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

QUESTIONS

MCQ

- 1
- If a line makes angles α , β and γ with x, y and z-axes respectively, then the value of $\cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1$ is
 - b) -1 d) 0 a) 1 c) 2
- 2 The equation of the line in vector form passing through the points (-1, 3, 5) and parallel to the line $\frac{x-2}{3} = \frac{y+1}{3} = \frac{z-3}{-2}$ is
 - a) $\vec{r} = \hat{\imath} 3\hat{\imath} 5\hat{k} + \lambda (3\hat{\imath} + 3\hat{\jmath} 2\hat{k})$
 - b) $\vec{r} = -\hat{\imath} + 3\hat{\imath} + 5\hat{k} + \lambda (3\hat{\imath} + 3\hat{\jmath} 2\hat{k})$

 - c) $\vec{r} = 3\hat{\imath} + 3\hat{\jmath} 2\hat{k} + \lambda(-2\hat{\imath} + \hat{\jmath} 3\hat{k})$ d) $\vec{r} = 3\hat{\imath} + 3\hat{\jmath} 3\hat{k} + \lambda(2\hat{\imath} 3\hat{\jmath} + 3\hat{k})$

CASE STUDY BASED QUESTION

Fighter jets are flying in a formation for an aero show as shown in the figure. Taking 1 their control tower as the reference point and reference point being origin, the coordinates of two fighters in flight path are A (10.5 km, 10 km, 1 km) and B (10 km, 10.5 km, 0.9 km). They are moving along the straight line joining A and B at that point as seen in the figure

Based on the above information, answer the following questions.

- i) What are the direction ratios and direction cosines of the line \overrightarrow{AB} ?
- ii) What is the angle made by the line \overrightarrow{AB} with the positive direction of z-axis?
- iii) What is the Cartesian equation of the line passing through A and B? OR

What is the vector equation of the line passing through A and B?

ASSERTION REASON BASED QUESTIONS

In the following questions, a statement of Assertion(A) is followed by a statement of

Reason (R).

Choose the correct answer out of the following choices

- a. Both A and R are true and R is the correct explanation of A.
- b. Both A and R are true and R is not the correct explanation of A.
- c. A is true but R is false.

d. A is false but R is true.

Assertion (A): If the points (3,2,2), (2,3,4) and (1, λ -2,6) and (3,1,5) are collinear, then λ =6

Reason (**R**): Three points A, B and C are collinear if direction ratios of AB and BC are proportional.

Assertion (A): Lines $\frac{3-x}{2} = \frac{2y+4}{\lambda} = \frac{z-1}{5}$ and $\frac{x-2}{-1} = \frac{y+2}{4} = \frac{z-2}{2}$ are perpendicular, if $\lambda = -4$.

Reason (R): Two lines with direction ratios (a_1, b_1, c_1) and (a_2, b_2, c_2) are perpendicular if $a_1a_2+b_1b_2+c_1c_2=0$

ANSWERS

MCQ

1 d) 0

1

2

² b) $\vec{r} = -1\hat{\imath} + 3\hat{\jmath} + 5\hat{k} + \lambda(3\hat{\imath} + 3\hat{\jmath} - 2\hat{k})$

CASE STUDY BASED QUESTION

1 i) The given points are A (10.5, 10, 1) and B (10, 10.5, 0.9). Direction ratios of the line joining (x₁, y₁, z₁) and (x₂, y₂, z₂) is (a, b, c) = (x₂-x₁, y₂-y₁, z₂-z₁). Hence direction ratios of \overrightarrow{AB} are (-0.5, 0.5, -0.1) Now direction cosines of \overleftarrow{AB} are $(\frac{-0.5}{\sqrt{0.51}}, \frac{0.5}{\sqrt{0.51}}, \frac{-0.1}{\sqrt{0.51}})$

1 ii) The direction cosines of \overrightarrow{AB} are $(\frac{-0.5}{\sqrt{0.51}}, \frac{0.5}{\sqrt{0.51}}, \frac{-0.1}{\sqrt{0.51}})$

$$\Rightarrow (\cos\alpha, \cos\beta, \cos\gamma) = (\frac{-0.5}{\sqrt{0.51}}, \frac{0.5}{\sqrt{0.51}}, \frac{-0.1}{\sqrt{0.51}})$$

where α , β , γ are the angles made by the line \overleftarrow{AB} with positive direction of x-axis, y-axis and z-axis.

So,
$$\operatorname{Cos} \gamma = \frac{-0.1}{\sqrt{0.51}}$$

 $\Rightarrow \gamma = \cos^{-1}(\frac{-0.1}{\sqrt{0.51}})$

1 iii) The Cartesian equation of a line joining (x_1, y_1, z_1) and (x_2, y_2, z_2) is $\left(\frac{x-x1}{x2-x1} = \frac{y-y1}{y2-y1} = \frac{z-z1}{z2-z1}\right)$.

Hence the Cartesian equation of a line \overleftrightarrow{AB} is $(\frac{x-10.5}{-0.5} = \frac{y-10}{0.5} = \frac{z-1}{-0.1})$

OR

The vector equation of the line joining the points whose position vectors are \vec{a} and \vec{b} is

 $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$ Here $\vec{a} = 10.5\hat{i} + 10\hat{j} + \hat{k}$ and $\vec{b} = 10\hat{i} + 10.5\hat{j} + 0.9\hat{k}$ Hence the vector equation of the line is $\vec{r} = (10.5\hat{i} + 10\hat{j} + \hat{k}) + \lambda(-0.5\hat{i} + 0.5\hat{j} - 0.1\hat{k})$

ASSERTION REASON BASED QUESTIONS

a) Both A and R are true and R is the correct explanation of A.

2 d) A is false but R is true

1
