MATHEMATICS - CLASS XII

SUGGESTIONS FOR COMPETENCY BASED QUESTIONS

TOPIC	QUESTION	REMARK
PROBABILITY	Q) Mini forgot to write down a very important phone number. All she remembers is that it started with 621 and that the next set of 4 digits involved are 3, 5 and 9 with one of these numbers appearing twice. She guesses a phone number and dials randomly. The odds in favour of dialling the correct telephone number, is	Problems involving odds in favour are not included in the syllabus
	Q) Assertion (A): For $P(E_1) = 4/10$, $P(E_2) = 4/10$, $P(E_3) = 2/10$, $P(E/E_1)=45/100 P(E/E_2)=60/100$, $P(E/E_3)=35/100$, we have $P(E)=0.49$ (using total probability). Reason (R): $P(E) =$ $P(E_1)P(E/E_1)+P(E_2)P(E/E_2)+P(E_3)P(E/E_3)$.	"using total probability" can be excluded
	Q) If both of them hit the Archery target, then find the probability that(a) exactly one of them earns 10 points.(b) both of them earn 10 points.	Sentence can be changed as - If both try to hit the target
Probability	Q)A, B and C are three students. Their probability of solving a problem are 30%,25% and 45% respectively. The problem of making error by these children are 1%, 1.2% and 2% respectively. Then total Probability of committing an error in solving the problem is	The word "total" can be excluded

		Qn. 3 in the answer key for mean it is given as $P(X)$ it should be replaced as $E(X)$.
Relations and Functions	Q) Assertion (A) : Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both and b are either odd or even}. R is equivalence relation. Reason (R) : Since R is reflexive, symmetric but R is not transitive.	In one set answers are provided along with the questions both a and b are either odd or even MCQ's are not competency based questions
Linear programming	Q)Assertion (A) : The constraints - $x_1 + x_2 \le 1$, $-x_1 + 3x_2 \ge 9$ and x, y ≥ 0 , defines an unbounded feasible region. Reason (R) : The maximum value of Z = 4x + 2y subject to the constraints, 2x + 3y ≤ 18 , x + y ≥ 10 and x, y ≥ 0 is 5.	Assertion (A) : The constraints $-x + y \le 1$, $-x + 3y \ge 9$ and x, $y \ge 0$, defines an unbounded feasible region. Answer wrong Both Assertion and Reason are false. Question can be corrected as 1) $-x_1 + x_2 \ge 1$
Linear programming	Q no 5 case study	Answer for Sub question 1 is given in sub question 3. Also third question is very direct and simple .
Differential equations	Q) Polio drops are delivered to 50K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops(case based question) (i) (a) Find the solution of the differential equation $\frac{dy}{dx} = k(50 - y)$ (b) Find the value of C in the particular solution given that y (0) = 0 and k = 0.049 (ii) Find the solution that may be used to find the number of children who have been given the polio drops. <u>Answer key case study question</u>	Can be replaced as "Find the value of the constant in the general solution"

	(ii) $-\log 50 - y = kx + \log \frac{1}{50}$ $-kx = \log 50 - y + \log \frac{1}{50}$ $-kx = \log \frac{50 - y}{50}$ $e^{-kx} = \frac{50 - y}{y} = 1 - \frac{y}{50}$ $\frac{y}{10} = 1 - e^{-kx}$	$e^{-kx} = \frac{50-y}{50}$
	$y = 50(1 - e^{-kx})$	
Three Dimensional Geometry	Q) Assertion(A): Direction cosines of y- axis are 0,1,0. Reason(R): Any order triplet represents direction cosines of a line. Case based question:Fighter jets are flying in a formation for an aero show as shown in the figure. Taking their control tower as the reference point and reference point being origin, the coordinates of two fighters in flight path are A (10.5 km, 10 km, 1 km) andB (10 km, 10.5 km, 0.9 km).They are moving along the straight line joining A and B at that point as seen in the figure <u>Assertion -Reason based</u> 1. Assertion (A): If the points (3,2,2), (2,3,4) and (1, λ - 2,6) and (3,1,5) are collinear, then λ =6 Reason (R): Three points A, B and C are collinear if direction ratios of AB and BC are proportional.	Ordered km can be removed First 3 points enough (3,1,5) can be removed.

Three Dimensional Geometry	Q)In the following questions consist of two statements – Assertion(A) and Reason(R). Answer these questions by selecting the appropriate option given below:	Can be corrected as "The following questions consists of two statements"
Application of Integration	Q)A thief was escaping after robbing a bank and follow the path which represent the(case based question)	Equation of parabola is not having vertex as the origin. Only parabolas in the standard form are given in the syllabus
Application of derivatives	Q)If $a < 0$, $f(x) = e^{ax} + e^{-ax}$, then which of the following is true for x? x > 0 b) $x < 0$ c) $x >1$ d) $x < 1$	Question is incomplete Should mention f(x) is a decreasing function
Application of derivatives	Q) Let a, b e R be such that the	$f(x)=\log x +bx^2+ax$
	function $f(x) = log$ + $bx^2 + ax, x \neq 0$ has extreme values at x = -1 and x = 2.	Answer is given as option (a) , instead of (b)
	Assertion(A): Function <i>f</i> has local maxima at x = -1 and at x = 2 Reason(R): $a = \frac{1}{2}$, $b = -\frac{1}{4}$	All the questions in this paper are having lengthy calculations
Application of derivates	ASSERTION : I f $x= 3$ 0, then the function y has a maxima at the critical point.	Answer is not there in the option
	REASON: $x = c$ is a point of maxima if f'(c) 0	
	Answer: Assertion and Reasoning statements are false.	Answers not given separately. Given along with the questions

Application of derivatives	Q)Let Assertion(A): Function f is strictly increasing in $(-\infty,2] \cup [6,\infty)$ Reason(R): Function f is strictly decreasing in [2,6]	Answers not given separately. Given along with the questions
	Q)An orange grower finds that an orange tree produces , on average 400 oranges per year, if no more than 16 trees are planted in a unit area. For each additional tree planted per unit area, the grower finds that the yield decreases by 20 oranges per tree .	Reason: It should be (2,6) An orange grower finds that an orange tree produces , an average of 400 oranges per year, if 16 trees are planted in a unit area.
Application of Derivatives	MCQ Q) If the perimeter and area of a circle are equal numerically then the diameter of the circle is (a) 2 units (b) π units (c) 4 units (d) 7 units ASSERTION – REASON BASED QUESTIONS Assertion (A) : If the length, breadth and height of a cuboid are 4,3 and 2cm respectively, then the length of each of the diagonal is $\sqrt{29}$ units. Reason (R) : Length of each of the diagonal is $\sqrt{l^2+b^2+h^2}$ units. Q)Assertion (A) : In a competition, a mergen to inflate a huge enhanced.	MCQ1, Assertion & Reasoning qn. 1&3 and case study question are all based on class 10 concepts. Answers not provided
	a person to inflate a huge spherical balloon at the rate of 900 cubic cm of gas per second. The rate at which the	

radius is increasing, when the radius
is 15 cm is $1/\pi$ cm/sec.
Reason (R) : Volume of a sphere is
$1/3 \pi r^3$.
Q) Assertion (A) : The two
concentric circles with radii a and b
where a>b is given. The length of the
chord of the larger circle which
touches the smaller circle is $2 \sqrt{a^2}$ –
b^2 .
Reason (R): Concentric circles
have the same centre.
CASE STUDY QUESTIONS
1. A Rectangle having perimeter 72
cm is revolved about one of its
sides (length).
a. Name the figure obtained after
revolution.
b. Find the area of the rectangle
in terms of its length (length –
x. breadth $- y$).
c. Find the volume of the
resultant figure (After
revolution).
d. Find the value of x for which
the volume is maximum.
MATRICES AND Q) If A is a square matrix of order 2 10 I (I should be entered in bold otherwise

	(a) 1 (b) 10 (c) 100	
	(d) 10 <i>I</i>	
	Case study question , option 4	Steps are wrong in the answer key , but
	,answer key	answer is correct
Continuity and		
Differentiability		the sector of th
	Q) Assertion(A): If $x = at^2$ and $y =$	Here both assertion and reason are false and
	2at, then $\frac{d^2y}{du^2} _{t=2} = -\frac{1}{2}$.	assertion to be corrected as
	Reason(R): $\frac{d^2y}{dt^2} = \left(\frac{dy}{dt}\right)^2 \times \left(\frac{dt}{dt}\right)^2$.	$\frac{d^2 y}{d^2 y} = -\frac{1}{2}$
	$\frac{dx^2}{dt} = \frac{dt}{dx}$	$dx^2 \int t^2 dx = 16a$
	Q) Assertion(A): The function f(x) =	
	sin x is not differentiable at points	
	$x = n\pi$.	
	Reason(R): The left-hand derivative	
	and right hand derivative of the	
	function f(x) = sin x are not equal	
	at points $x = n\pi$.	Answer is given as option d) but correct
		answer is a)
Continuity and	Assertion (A): If $x = at^3$ and $y = 3at^2$	Here both assertion and reason are false and
Differentiability	where 't' is the parameter and 'a' is a	since such an option is not there, the
	constant, then	assertion to be corrected as
	$d^2 u = 2$	
	$\frac{a^2y}{dx^2} = \frac{-2}{3at^3}.$	$d^2 v = -2$
	$d^2 $, $d^2 $, $d^2 $, $d^2 $,	$\frac{dy^2}{dx^2} = \frac{dy^2}{3at^4}$
	Reason (R): $\frac{a^2y}{dx^2} = \frac{a^2y}{dt^2} \div \frac{a^2x}{dt^2}$	un Sut